
 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

04
 O

ct
ob

er
 2

02
1 
rspb.royalsocietypublishing.org
Research
Cite this article: Caizergues AE, Grégoire A,
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Increasing urbanization offers a unique opportunity to study adaptive

responses to rapid environmental change. Numerous studies have demon-

strated phenotypic divergence between urban and rural organisms.

However, comparing the direction and magnitude of natural selection

between these environments has rarely been attempted. Using seven years

of monitoring of great tits (Parus major) breeding in nest-boxes across the

city of Montpellier and in a nearby oak forest, we find phenotypic diver-

gence in four morphological and two life-history traits between urban and

forest birds. We then measure reproductive selection on these traits, and

compare selection between the habitats. Urban birds had significantly smal-

ler morphological features than their rural counterparts, with a shorter

tarsus, lower body mass, and smaller wing and tail lengths relative to

their overall body size. While urban female tarsus length was under stabiliz-

ing selection, and forest males show positive selection for tarsus length and

negative selection for body mass, selection gradients were significantly

divergent between habitats only for body mass. Urban great tits also had

earlier laying dates and smaller clutches. Surprisingly, we found selection

for earlier laying date in the forest but not in the city. Conversely, we

detected no linear selection on clutch size in the forest, but positive selection

on clutch size in the urban habitat. Overall, these results do not support the

hypothesis that contemporary reproductive selection explains differences in

morphology and life history between urban- and forest-breeding great tits.

We discuss how further experimental approaches will help confirm whether

the observed divergence is maladaptive while identifying the environmental

drivers behind it.
1. Introduction
Human activities drive tremendous environmental changes in a wide range

of ecosystems around our planet. Wildlife responses to these changes provide

interesting models for evolutionary biologists, as phenotypic divergence

between populations is usually much more pronounced when one of the

paired populations is found in a human-modified habitat [1]. Among emer-

ging human-altered habitats, urban areas provide some of the most striking

environmental changes, both in terms of the level of artificiality as well as

in terms of the temporal scale of landscape changes. Cities offer a range of

new environmental conditions, such as high levels of pollution, increased

noise levels, artificial light, modified plant communities, new patterns of

access to resources and higher temperatures [2]. Research in urban ecology

during the past decade has revealed many cases of phenotypic divergence

between urban and native habitats. This is especially true for birds, which

have been studied for over a century [3], and for whom studies have

shown divergence in morphology, physiology, behaviour, song [4–6] and

life history [7], highlighting the existence of urban versus rural ecotypes
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(i.e. populations presenting phenotypical divergence associated

with particular environmental conditions).

Although some studies have found consistent patterns

across species for a few traits, such as reduced body size

in urban birds [8], no general pattern of morphological

divergence arises for urban populations. For instance, sev-

eral studies find birds have a lower body condition in the

city [5,7], and suggest that these differences might be adap-

tive due to higher temperatures (Bergmann’s rule applied

to urban habitats) and the non-necessity of fat reserves

because of high resource predictability [5,9]. However,

lower body mass in the city could also be maladaptive,

and result from a lack of food resources (e.g. low insect

abundance) [10]. Furthermore, because some studies find

no difference in body mass between urban and rural

birds, and others find a difference in the opposite direction

[7], morphological differentiation seems to be species- and

site-dependent [7,11].

The life-history ecotype of urban birds seems more gener-

alizable than the urban morphotype (i.e. set of morphological

characteristics specific to urban populations). Indeed, in the

majority of species investigated, urban birds display smaller

clutch sizes and advanced laying dates (reviewed in [12]).

In particular, urban populations of great tits (Parus major)

and blue tits (Cyanistes caeruleus) consistently have earlier

and smaller clutches than those in natural habitats [13,14].

In seasonal environments, synchronization between a bird’s

phenology and the optimal timing of reproduction (e.g.

peak in abundance of arthropods for insectivorous species)

is controlled by environmental cues such as photoperiod,

temperature, light and bud burst [15]. A mismatch between

realized and optimal phenology can reduce individual fitness

and affect population dynamics [16]. Modified environmental

conditions in the city, particularly higher temperatures

and novel plant communities, could lead to (1) incorrect

information on the date of the optimal timing of reproduc-

tion and (2) modified access to resources. Hence, as with

changes in morphology, changes in urban bird phenology

could be maladaptive.

Surprisingly, the ecological and evolutionary processes

leading to the phenotypic changes during the urbanization

process remain largely unknown [17]. In particular, whether

the new phenotypes observed in cities are adaptive and

whether they are the result of ongoing micro-evolutionary

processes are two of the most pressing questions in urban

evolutionary ecology. The assumption that rapidly evolving

urban areas offer novel selection pressures is prevalent

in the literature [1,18], giving rise to a second common

assumption that urban ecotypes are adaptive. In several

cases, genetic studies have demonstrated that the observed

phenotypic differences between urban and natural popu-

lations are genetically based (e.g. [19,20]) and have, in

some cases, arisen recently despite gene flow (e.g. [21]).

However, at present only a handful of studies have expli-

citly compared the direction and force of natural and/or

sexual selection acting in urban versus natural habitats by

linking phenotypes to fitness [18]. The industrial melanism

in the peppered moth (Biston betularia) is the most famous

example, demonstrating how increasing (and subsequently

decreasing) air pollution induced novel selection (and

subsequently reverse selection) that resulted in rapid

evolution of phenotypes and genotypes associated with

camouflage [22]. More recently, a study on the northern
cardinal (Cardinalis cardinalis) revealed relaxed sexual

selection on colouration for urban males compared with their

forest conspecifics because of a disassociation between bright-

ness of male plumage and territory attributes in urbanized

areas [23].

The present study addresses the fundamental question:

does selection differ in direction and magnitude between a

forest and an urban avian population? Our work is divided

into two parts. First, we analyse phenotypic divergence

between forest and urban great tits for several morphological

and life-history traits, using a long-term study in and near the

city of Montpellier, France. Second, we perform selection ana-

lyses on these traits and compare patterns of reproductive

selection between forest and urban habitats. Based on pre-

vious studies on other populations of the same species, we

predict that urban great tits will present smaller morphologi-

cal characteristics than their forest counterparts. We also

predict an earlier laying date in the city due to higher temp-

erature perceived as an indicator of earlier spring and smaller

clutch size linked to fewer food resources. We then test

whether the divergences found in morphology and life his-

tory are aligned with differences in the direction and/or

force of reproductive selection.
2. Material and methods
(a) Study areas, monitoring and phenotyping
Two populations of great tits (P. major) were monitored in the

south of France: one in a forested area and one in an urban

area. The forested site, in the forest of La Rouvière, is situated

20 km northwest of the city of Montpellier. At this site,

between 51 and 92 great tit nest-boxes have been monitored

since 1991 [24]. The urban site is within the city of Montpellier,

and contains 203–223 nest-boxes that have been monitored

since 2011, providing data on great tits across various levels

of urbanization [13,25]. The forest and urban sites presented

largely dissimilar environmental conditions. In the city, nest-

boxes were not only placed in parks, but also on trees near

pavements, roads and street lamps, thus exposed to human

disturbance, air and light pollution. Moreover, the vertical

matrix is highly modified with numerous buildings and

reduced vegetation cover composed of many ornamental flow-

ers and trees such as platanus (Platanus � acerifolia), olive trees

(Olivacea europea) or resinous trees. By contrast, the forest site

was dominated by downy oaks (Quercus pubescens) and holm

oaks (Quercus ilex), with limited human disturbance and pol-

lution levels. Hence the rural site corresponds to a mature

stage of a Mediterranean forest succession, while the urban

site corresponds to a human-dominated place with a higher

proportion of artificial cover. On average, nest-box environ-

ment (estimated based on satellite image analysis within a

100 m diameter circle around each nest-box) was covered at

61.9% by vegetation in the city versus 98.9% in the forest, the

remaining percentage being impervious surfaces. Satellite

pictures of both sites and details on estimation in green cover

are available in the electronic supplementary material (figure S1

and appendix S1).

Nest-boxes were visited at least once a week during the

breeding season to follow brood development. Parents were cap-

tured inside nest-boxes when their nestlings were between 9 and

15 days old and were individually measured for several morpho-

logical (i.e. tarsus length, body mass, wing and tail lengths) and

behavioural traits, and ringed with unique metal rings. For more

details about the monitoring protocol see electronic supplemen-

tary material, appendix S1. At the urban site, although brood
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development traits have been monitored since 2011, parents have

only been captured since 2013. In the analysis, only years for

which both study sites were sampled are considered. Between

2011 and 2017, a total of 192 forest broods and 546 urban ones

were monitored for which 153 forest and 391 urban birds were

captured (from once to four times between 2013 and 2017).

(b) Statistical analyses
All data analyses were performed using the software R (version

3.4.0).

(i) Urban versus forest phenotypic divergence
Differences between the two habitats in great tit morphology

were explored using linear mixed models (packages lme4 and

lmerTest) on four traits: tarsus length, body mass, wing length

and tail length. Full models included year (as a categorical vari-

able), habitat (urban versus forest), sex (male versus female) and

age (yearling versus adult) as fixed effects, with the following

interactions: habitat � age, habitat � sex, habitat � year, sex �
age, sex � year. Individual ring number and measurer identity

were fitted in all models as random effects. As morphological

traits were highly correlated (see all between-trait correlations

in electronic supplementary material, table S1), measures of

body mass, wing length and tail length were scaled for the gen-

eral bird size by including tarsus length as a covariate, thereby

modelling body condition and relative wing and tail lengths.

Avian tarsus length is a common index of structural size of the

whole bird (e.g. [26]). As great tit body mass is known to vary

consistently during the day in a linear manner (e.g. [27]), the

hour of measure was added as a continuous explanatory variable

in body mass models.

To test for differences in laying date and clutch size (hereafter

referred to as LD and CS, respectively) between the city and the

forest, we considered only first broods because second and repla-

cement broods were rare and would require a separate analysis.

As above, linear mixed models were run with habitat, year and

habitat � year as fixed effects. LD was added in the CS model

to account for the fact that late females usually lay smaller

clutches [13,28]. Female identity was included as a random

effect to account for the non-independence of broods from the

same females. Because the monitoring did not include parental

captures during the first two years and because all females

were not captured (when abandoning before chicks reached 9

days old, death or failure to capture), female identity was

unknown for 54% of broods (342 out of 739). To avoid the loss

of half of our dataset, we attributed a fictitious ring number to

each non-captured female.

For each trait, the best model was selected using a backward

stepwise procedure starting from a full model, and the signifi-

cance of each fixed effect and interaction was tested using a

F-test (R function anova()). This procedure was used to eliminate

non-significant variables: at each step, the effect presenting the

highest p-value was removed and the model run again without

it. While we present only ANOVA of the best-fitting models

below, summaries of full and best-fitting models are provided

for each trait in the electronic supplementary material (tables

S2–S5).

(ii) Measuring and comparing the force of selection
We estimated reproductive selection for the focal morphological

and life-history traits, and subsequently tested whether the direc-

tion and force of selection varied between the urban and forest

habitats. Separate analyses were run for each sex because of

sexual dimorphism (males are larger, e.g. [29] and table 1).

The choice of an optimal estimation of relative fitness to ade-

quately measure natural and sexual selection is a long-standing

debate [30] with no straightforward solution. As our goal was
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to understand the adaptive mechanisms explaining urban/forest

divergence in a set of traits with little access to complete life his-

tories, we opted for an annual measure of fitness rather than

lifetime reproductive success [31]. Also, because of the short

time scale of our dataset and following arguments that natural

selection is a within-generation process [32], we chose the

number of fledglings as a fitness measure rather than the

number of recruits.

We first estimated standardized univariate selection differen-

tials (S) on all traits individually [33,34] in each habitat

separately. The linear selection differential for a trait is estimated

by the slope of the regression between a measure of relative fit-

ness and standardized values of the phenotypic trait. Selection

differentials measure the total force of selection affecting a trait,

including both direct and indirect selection [32]. As all four mor-

phological traits were correlated with body size (electronic

supplementary material, table S1), estimations of selection differ-

entials were performed on measures corrected for size by using

residuals of a linear regression between the trait (body mass,

wing or tail length) and tarsus length run on the pooled dataset

with both urban and forest birds. For body mass, the time at

which each measurement was taken was added as an additional

explanatory variable in the linear regression, thereby providing a

measure of body condition corrected for time of day.

To identify the target of selection when multiple, potentially

correlated, traits are simultaneously studied, multivariate selec-

tion gradients b [32] estimate direct selection on each trait after

removing indirect selection from other traits. These multivariate

models were run for normally standardized morphological

and life-history traits separately. For example, linear selection

gradients bi on morphological traits were estimated by the model

v ¼ aþ b1x1 þ b2x2 þ b3x3 þ b4x4 þ 1, ð2:1Þ

where v is the relative fitness, a is the intercept, x1 is the tarsus

length, x2 is the body mass, x3 is the wing length, x4 is the tail

length and 1 is the error. We also estimated nonlinear quadratic

(gi) and correlational (gij) selection gradients from the following

model [35]:

v ¼ aþ b1x1 þ b2x2 þ b3x3 þ b4x4 þ
g1

2

� �
x2

1

þ g2

2

� �
x2

2 þ
g3

2

� �
x2

3 þ
g4

2

� �
x2

4 þ g12x1x2 þ g13x1x3

þ g14x1x4 þ g23x2x3 þ g24x2x4 þ g34x3x4 þ 1: ð2:2Þ

When estimating selection gradients, correction for tarsus

length was not needed because tarsus length was already in

the model (equations (2.1) and (2.2)). Hence, only body mass

was corrected for hour of the day using residuals from a linear

regression between body mass and hour of measure. Selection

gradients on life-history traits in each habitat were estimated in

the same way, with LD and CS as traits 1 and 2 in (2.1) and (2.2).

Estimation of parameters and tests of significance were con-

ducted in two steps (e.g. [36]). First, estimates of selection

differentials and gradients were obtained from linear models as

described by equations (2,1) and (2.2). Second, significance (i.e.

p-values) of these selection differentials and gradients were esti-

mated from linear mixed models including year and individual

ring number (only female identity for life-history traits) as

random effects to control for variation across years and repeated

measurements on the same individuals. Then, to test for a differ-

ence in selection operating in the two habitats, urban and forest

datasets were combined and habitat (forest versus urban) and

habitat � trait were added as fixed effects in the models

described above. Significance of the interaction terms was

tested using F-tests (R function anova()).

Finally, because variance can provide insight on past selec-

tion as well as relaxed selection, a comparison of variance was
made between habitats for each trait with a Fisher variance

ratio test (var.test(), R package stats).
3. Results
(a) Urban versus forest differences in morphology and

life history
Comparison of morphological features between urban and

forest great tits revealed a strong phenotypic differentiation

(figure 1). Indeed, for all four traits, habitat (urban versus

forest) had a significant effect either alone or in an interaction

(table 1). First, urban birds were smaller than their forest

counterparts, as shown by a tarsus length 1.3 to 1.6% smaller

(males and females) in urban birds ( p , 0.001; table 1; elec-

tronic supplementary material, table S3). Second, urban

birds had lower body mass corrected for tarsus length

(interaction ¼ 0.002; table 1; electronic supplementary

material, table S3). Third, urban birds displayed shorter

wings and tails ( p , 0.001 and p ¼ 0.001; table 1; electronic

supplementary material, table S3). In both populations,

there was a significant sexual dimorphism, with males

larger than females (table 1). We also noted an effect of

year, either directly or via an interaction, for all morphologi-

cal traits but tarsus length (see electronic supplementary

material, figures S2–S4). For instance, differences in wing

length between the habitats varied between years (significant

habitat � year interaction, p ¼ 0.023; table 1; electronic sup-

plementary material, table S3). Moreover, yearlings displayed

smaller features than adults (except for tarsus length, which

is fully grown at 15 days of age; electronic supplementary

material, table S3).

Concerning life-history traits, urban females laid eggs on

average 4.05 days before forest females ( p ¼ 0.032; table 2;

figure 2; electronic supplementary material, table S5; figure 2)

and their earliness showed annual fluctuations (significant

habitat � year interaction, p ¼ 0.02; table 2; electronic sup-

plementary material, table S5). Mean LD varied annually



Table 2. Comparing laying date and clutch size between forest and urban great tits using linear mixed models. Habitat-specific means (raw data) and output of
F-tests for significant fixed effects (in bold). Nurban ¼ 546 and Nforest ¼ 192.

laying date clutch size

forest city forest city

mean+ s.d. 100.01+ 7.24a 97.2+ 8.35a 9.16+ 1.75 7.46+ 1.51

fixed effects sum sq. d.f. F p sum sq. d.f. F p

habitat 1033.4 1 36.18 3 3 1029 261.35 1 157.63 <2 3 10216

year 7521.5 6 43.88 <2 3 10216 34.68 6 3.49 2 3 1023

habitat � year 444.9 6 2.60 0.02 5.97 6 0.60 0.73

laying date — — — — 7.70 1 4.65 0.03
aLaying date is expressed in ordinal date, where 1 ¼ 1 January.
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Figure 2. Divergence in (a) laying date and (b) clutch size between forest
(green) and urban ( purple) great tits. Boxplots of predicted data from the
best linear mixed models, representing minimum, first quartile, median,
third quartile, maximum and outliers ( points). (c) Correlations between
laying date and clutch size in both habitats (raw data) with 95% confidence
intervals in grey.
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with a magnitude of 9 days across the 7 years of monitoring.

Urban females laid 1.75 less eggs on average than their forest

counterparts ( p , 0.001; table 2; figure 2; electronic sup-

plementary material, table S5). As expected, we observed a

negative correlation between LD and CS when accounting

for habitat and year as fixed effects and female identity as a

random effect ( p ¼ 0.03; table 2; figure 2).

(b) Selection on morphology
Only selection gradients are presented in the main results (see

electronic supplementary material, table S6 and figure S5 for

selection differentials). Regarding females, no linear selection

was detected on morphological traits, but we found stabi-

lizing selection on tarsus length in the city (g ¼ 20.166,

p ¼ 0.036; electronic supplementary material, table S7). How-

ever, pooling the urban and forest datasets revealed that

this quadratic selection was not significantly different

between habitats (non-significant tarsus2 � habitat interaction,
p ¼ 0.632; electronic supplementary material, table S7). Con-

cerning males, we detected linear selection for larger tarsi in

the forest ( p ¼ 0.01; table 3), but once again the difference in

selection between habitats was non-significant (non-significant

tarsus � habitat interaction, p ¼ 0.275; table 3). Moreover, we

detected significant negative linear selection on body mass

for forest males (table 3), and a significant difference in

selection between city and forest (significant body mass �
habitat interaction, p ¼ 0.034; table 3). This result suggests

that lighter birds have higher reproductive success in the

oak forest but not in the urban habitat. Finally, no difference

in variance was found in any morphological trait (electronic

supplementary material, table S8).

(c) Selection on life-history traits
As above, the selection differentials and gradients show simi-

lar patterns, and we, therefore, present only the results for

selection gradients (but see electronic supplementary

material, tables S9 and S10 for selection differentials and

quadratic selection gradients on LD and CS). There was nega-

tive linear selection favouring earlier breeding in the forest

( p ¼ 0.031; table 4). In contrast, LD was under no selection

in the city (table 4; electronic supplementary material,

figure S5). In the model combining both habitats, the LD �
habitat interaction was significant ( p , 0.001; table 4), with

a difference of 0.31 between the two standardized gradients.

A comparison of variances showed higher variance in LD at

the urban site (electronic supplementary material, table S8),

suggesting relaxed selection on LD in the city.

The force of selection on CS also differs between the two

habitats (electronic supplementary material, figure S5): great

tits showed significant positive linear selection for CS in the

city ( p , 0.001; table 4), but not in the forest (table 4). The

pooled model revealed that this difference in selection affect-

ing urban and forest CS was marginally significant (CS �
habitat interaction, p ¼ 0.054; table 4). Finally, variance

in CS was higher in the forest than the city (electronic

supplementary material, table S8).
4. Discussion
In this study, we investigated whether an urban ecotype

existed in great tits breeding in the city of Montpellier, and

whether this ecotype could be explained by divergent
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selection between urban and forest habitats. We highlighted

the existence of an urban morphotype in great tits, whereby

urban birds showed smaller body size, reduced body mass,

and smaller wing and tail lengths, compared with their

forest counterparts. Moreover, urban great tits displayed ear-

lier breeding phenology and smaller clutches. Selection

analyses showed no differences in selection on morphological

features between habitats, except for body mass in males,

whereby lighter males had higher reproductive success in

the forest but not in the city. On the contrary, life-history

traits displayed strong selection gradients, with an interesting

contrasted selection between the city and the forest. Patterns

of selection on laying date (LD) varied between habitats in

both direction and strength: while early females were

favoured in the forest, there was non-significant positive

selection on LD in the city. Finally, selection on clutch size

(CS) differed in strength between the city and the forest,

with significant selection favouring large clutches in the

city but non-significant selection in the forest. We discuss

below how this direct comparison of the force of selection

operating in urban and forest habitats improves our

understanding of evolution in cities.
(a) Is morphological divergence adaptive?
Our morphotype analysis is, in part, consistent with previous

studies on urban birds. Most passerine studies on nestlings or

reproductive individuals have reported that urban birds are

smaller than their counterparts from native environments

[4,5,37]. On the contrary, the finding that birds in the city

had a lower body mass than those in the forest is consistent

with some studies (e.g. [5]), but not all [4,37]. Several city fea-

tures have led to predictions that being smaller could be

associated with a stronger fitness advantage in an urban

habitat than in a forest habitat. First, cities are ‘urban heat

islands’ [2]. Hence, following Bergmann’s rule [38], warmer

city environments should translate into a smaller adaptive

body size. Second, the ‘credit card hypothesis’ [39] postulates

that higher food resource predictability in cities should allow

urban birds to live without accumulating fat reserves. How-

ever, our selection analysis did not support the prediction

of stronger negative directional selection in the city. If

anything, the reverse could be true, because the only signifi-

cant difference in selection gradient for morphological traits

revealed that leaner males had higher reproductive success

in the forest, but not in the city (table 3). However, such a

negative selection gradient on body mass is not unusual

[40] and should be interpreted with care. As body mass

was measured for parents during the nestling feeding

period, it is highly likely that the association between the

number of fledglings and paternal body mass results from

active males with large broods losing more weight during

the reproductive period. It remains to be explained why

urban fathers would not lose weight compared with forest

fathers during the reproductive season. Overall, these results

suggest that the morphological differences between urban

and forest birds are not an adaptive response to divergent

selection operating presently. Note that the absence of signifi-

cant selection on male and female morphology in urban birds

could also be indicative of a fast evolution towards the urban

morphotype following strong past selection. The hypothesis

of an evolutionary stable optimum reached in the city

environment is, however, not supported by (a) a variance



Table 4. Standardized linear selection gradients estimated for laying date (bLD) and clutch size (bCS). Values are provided with their standard error. Bold
estimates are significant ( p , 0.05). ‘Interaction’ displays the value of the interaction between each trait and habitat in the merged (forest þ city) model.

habitat sample size

linear selection gradients

bLD bCS

est.+++++ s.e. interaction est.+++++ s.e interaction

forest 185 20.14+++++ 0.06 0.31 0.08+ 0.06 0.12

urban 524 0.09+ 0.03 0.21+++++ 0.03
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comparison (electronic supplementary material, table S8)

revealing no difference between habitats for all morphologi-

cal trait variances, and (b) the documented population

genetic structure. Indeed, a recent genomic study showed

low genetic differentiation between the two focal populations

(FST close to 0.01) [41], suggesting strong gene flow, and

hence small potential for local adaptation [42].

Our finding of smaller relative wing and tail length in

urban great tits is comparable with only one published

study, on the European blackbird Turdus merula, where a

comparative approach across 11 paired urban and rural

sites [11] found inconsistent results across sites, but generally

longer wings in urban birds. Wing and tail morphologies are

directly linked to flight aerodynamics, for example, shorter

wings and longer tails increase manoeuvrability [43]. The

urban habitat being substantially different in its vertical

matrix (e.g. buildings) compared with a forest, and having

an increased collision risk (e.g. from numerous vehicles), it is

easy to imagine that modified plumage characteristics could

be advantageous. However, our selection analyses for relative

wing and tail length show no evidence for reproductive

selection on either trait in either habitat.

Overall, while the weak selection on morphology is con-

sistent with previous studies in passerines [40,44], our

analyses provide no support for an adaptive explanation for

the morphological divergence between city and forest great

tits. Thereby, morphological plasticity remains the most

likely process explaining the observed phenotypic differen-

tiation, and could be a maladaptive product of unfavourable

environmental conditions [5]. This hypothesis remains to be

tested using common garden or cross-fostering protocols.

Such experimental approaches would help identify which

environmental features (such as food abundance and predict-

ability, predation pressure, pollution) are responsible for the

divergent morphotypes. Also, while our selection analysis

focuses on the breeding period, we are well aware that selec-

tion can vary among life stages, thus calling for studies that

consider cumulative effects of selection over the life cycle. A

complementary analysis of selection via survival is necessary

to reach conclusions regarding the overall selection pressures

affecting the focal traits in the two habitats. Developing a

unique fitness measure that combines survival and reproduc-

tion could provide a different picture of the adaptive nature of

the morphological divergence observed here [45].
(b) Maladaptive shift in urban life history
The observed differences in life-history traits, with an earlier

LD and smaller CS in the city than in the forest, are consistent

with previous findings [12]. The advanced LD could be
explained by modified environmental conditions in the city.

Indeed, passerines follow environmental cues to time their

egg laying, particularly temperature [46]. For instance, small

temperature differences inside nest-boxes influence LD [47].

Also, artificial light and differences in food resource avail-

ability could advance the phenology of urban birds [12].

Smaller CS in the city could be adaptive because of the restric-

tion in food resources for nestlings [12] or because of higher

brood predation risk [48]. Once again, these arguments

have, to our knowledge, not been associated with attempts

to compare selection in urban and rural environments. Here,

we provide the first demonstration of a difference in reproduc-

tive selection between the two habitats. While there is

reproductive selection for early LD in the forest as is often

observed in rural great tit populations [49], no selection is

detected in the city. This difference in selection could be

explained (a) by traditional environmental cues for optimal

LD timing becoming unreliable in the urban habitat, and/or

(b) by relaxed selection due to anthropogenic disturbances

changing selective regimes [50]. In particular, females usually

match their phenology to a peak in caterpillar abundance

using environmental cues, yet there might be no such peak

in the city [51], hence selection for LD might be relaxed, as

suggested by higher variance in urban LD. Exploring the

role of food abundance and timing would require fine-

scale entomological data in our urban sites to evaluate the

composition and abundance in urban arthropods and the

link between arthropod phenology and environmental

cues. It has been demonstrated that more favourable pre-

laying feeding conditions, induced by anthropogenic food

supplementation during winter, often advance avian LD

[12]. As food supplementation has no link with natural

food availability and cannot contribute to nestling diet,

such human-induced early LD might not be advantageous

[12]. Likewise, because we found selection favouring large

clutches in urban birds, the observed smaller and less vari-

able CS probably results from a constraint emerging from

poor food resources in the urban habitat [52,53].
(c) Limitations and perspectives
Our analyses provide a first step towards understanding the

way that natural selection shapes avian urban wildlife, but

we are well aware that complementary analyses will be

necessary before reaching any final conclusion about the

selection patterns in the two habitats. In particular, our

study focuses on a single pair of populations, and therefore

we must be cautious about drawing general inferences [54].

The good news is that the abundance of cities sets an ideal

opportunity to explore selection gradients in rural/urban
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pairs of populations in a replicated fashion, and to identify

which selection drivers differ between these two types of

habitats. We particularly encourage urban evolutionary

scientists working on great tits to reproduce our study in

their population(s) to allow a comparative approach

across the species’ distribution. Targeting recent coloniza-

tion of urban environments would be optimal to estimate

selection in great tit populations experiencing the city as a

novel breeding habitat.

The high demands of gathering long-term data on indi-

vidual phenotypes and fitness probably explain why, three

decades after the seminal work of Lande & Arnold [32],

very few analyses have compared the force and direction

of natural selection between city and native habitats. New

genomic tools have offered the prospect of studying the sig-

natures of urban adaptation without the necessity to conduct

long-term studies [18], with the added advantage of

exploring candidate genes for specific traits involved in

urban adaptation. For instance, behavioural differences

observed between urban and rural blackbirds were related

to divergence in the SERT gene, involved in exploratory be-

haviour [55]. However, in cases where urban organisms

display new phenotypes as part of a plastic response,

such genomic approaches will not be useful to understand

whether this plasticity is adaptive. Direct estimation of
selection gradients and genomic investigations are therefore

best seen as complementary and should ideally be paired.
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